Prospects for the use of neural networks for solving the problem of assessing the efficiency of regional man
Abstract
The digitalization of society is rapidly changing the structure of social relations and creating new channels for the exchange of information. A significant share of the activity of the population has flowed to digital information platforms, massively represented by social networks. However, under the current conditions, the government system does not use information technology tools to receive and analyze feedback from the population. Based on theoretical background and applied research, an analysis was made of the theoretical substantiation of the prospects for using modern social networks built on the basis of digital platforms to form a feedback channel. The conclusions and provisions presented in the article are based on the results of the analysis of theoretical studies of russian and foreign sociologists. The work shows that digital sociology methods based on big data technologies are being developed and applied to solve applied problems. The author proposes the use of neural network technology to analyze the publications of social network users in order to analyze the effectiveness of regional management. The application of this method in the context of the digitalization of society makes it possible to convert the qualitative assessments of activities expressed by users of social networks, social media into quantitative indicators, highlighting the problems of regional management, according to the population of the regions
About the Authors
N. V. ProkazinaRussian Federation
Prokazina Natalia Vasilievna, Doctor of Sociology, Professor
Orel
P. A. Shemanaev
Russian Federation
Shemanaev Pyotr Anatolyevich, Employee
Orel
S. V. Shekshuev
Russian Federation
Shekshuev Sergey Vasilyevich, employee
Orel
References
1. Bogdanov, V. S., Merzlyakov, A. A. Diagnosis of the potential of social participation in the context of organizing feedback between the government and the population [Diagnostika potentsiala sotsial’nogo uchastiya v kontekste organizatsii obratnoy svyazi mezhdu vlast’yu i naseleniyem] / V. S. Bogdanov, A. A. Merzlyakov. Sociology and management. - 2018. - V. 4, No. 4. - S. 65-77. – DOI 10.18413/2408-9338-2018-4-4-0-6.– EDN POIDJZ.
2. Dobrinskaya, D. E. Digital sociology for studying the digital society [Tsifrovaya sotsiologiya dlya izucheniya tsifrovogo obshchestva]/ D. E. Dobrinskaya // Bulletin of the Perm University. Philosophy. Psychology. Sociology. - 2021. - No. 2. - P. 250-259. – DOI 10.17072/2078-7898/2021-2-250-259. – EDN VXPEYC.
3. Ketova K. V., Rusyak I. G., Vavilova D. D. On the use of neural networks for solving the problem of clustering society [K voprosu o primenenii neyronnykh setey dlya resheniya zadachi klasterizatsii sotsiuma] // Bulletin of Science and Practice. 2020. V. 6. No. 8. pp. 19-33.
4. Luman N. Society as a social system [Obshchestvo kak sotsial’naya sistema]. M.: Logos, 2004. 232 p.; Luman N. What is communication // Sociological journal. 1995. No. 3. S. 114-124
5. Meshcheryakova N.N. Methodology of cognition of the digital society [Metodologiya poznaniya tsifrovogo obshchestva] // Digital Sociology. 2020. V. 3, No. 2. S. 17–26. DOI: https://doi.org/10.26425/2658-347x-2020-2-17-26;
6. Nikolskaya A. V., Kostrigin A. A. Application of the content analysis method in studying the attitude of social network users to modern Russian medicine. [Primeneniye metoda kontent-analiza v 6izuchenii otnosheniya pol’zovateley sotsial’nykh setey k sovremennoy rossiyskoy meditsine] // Southern Russian Journal of Social Sciences. 2019. V. 20. No. 1. S. 72-90.
7. Tikhonov A. V., Bogdanov V. S. From “smart regulation” to “smart management”: the social problem of feedback digitalization [Ot «umnogo regulirovaniya» k «umnomu upravleniyu»: sotsial’naya problema tsifrovizatsii obratnykh svyazey] . Sotsiologicheskie issledovaniya. 2020. No. 1. S. 74-81
8. Decree of the President of the Russian Federation of 04.02.2021 No. 68 «On assessing the effectiveness of the activities of senior officials (heads of the highest executive bodies of state power) of the constituent entities of the Russian Federation and the activities of executive authorities of the constituent entities of the Russian Federation» [Ob otsenke effektivnosti deyatel’nosti vysshikh dolzhnostnykh lits (rukovoditeley vysshikh ispolnitel’nykh organov gosudarstvennoy vlasti) sub»yektov Rossiyskoy Federatsii i deyatel’nosti organov ispolnitel’noy vlasti sub»yektov Rossiyskoy Federatsii].
9. Habermas J. Structural change in the public sphere: studies on the category of bourgeois society [Strukturnoye izmeneniye publichnoy sfery: issledovaniya otnositel’no kategorii burzhuaznogo obshchestva]: with a preface to the 1990 reprint. M.: Ves Mir, 2016. 342 p.;
10. Shchekotin E. V., Goiko V. L., Basina P. A., Bakulin V. V. Using machine learning to study the quality of life of the population: methodological aspects [Ispol’zovaniye mashinnogo obucheniya dlya izucheniya kachestva zhizni naseleniya: metodologicheskiye aspekty] // Digital Sociology. - 2022. - V. 5, No. 1. - S. 87-97. – DOI 10.26425/2658-347X-2022-5-1-87-97. – EDN XFZVWN.
11. Gunningham N., Grabosky P., Sinclair D. Smart Regulation: Designing Environmental Policy. Oxford: Oxford University Press, 1998.
12. Electronic resource. Access mode: https://wciom.ru/analyticalreviews/analiticheskii-obzor/mediapotreblenie-i-aktivnost-v-internete
13.
Review
For citations:
Prokazina N.V., Shemanaev P.A., Shekshuev S.V. Prospects for the use of neural networks for solving the problem of assessing the efficiency of regional man. P.O.I.S.K. 2023;(2):106-116. (In Russ.)